Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 918
Filtrar
1.
J Agric Food Chem ; 72(8): 4384-4392, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354408

RESUMO

The linoleic acid reaction models were set at 150 °C for 120 min, and its oxidation process was monitored by nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). Results showed that no furan was formed from linoleic acid without heating, while furan accumulated throughout the heating process. Linoleic acid ran out within 30 min, which indicated that furan was formed mainly from the intermediate oxidation products of linoleic acid after 30 min. It should be noticed that the content of (E,E)-2,4-decadienal reached maximum once the linoleic acid ran out and then decreased with the formation of furan. Multivariate statistical analysis suggested that (E,E)-2,4-decadienal was the most important aldehyde related to furan formation during linoleic acid oxidation. To prove this assumption, the variation of furan from (E,E)-2,4-decadienal reaction models heating at 150 °C for 60 min was also studied. Results showed that the content of furan increased with the oxidation of (E,E)-2,4-decadienal. Furthermore, NMR and GC-MS data proved that (E,E)-2,4-decadienal could be oxidized to 4,5-epoxy-(E)-2-decenal. In conclusion, our results supported (E,E)-2,4-decadienal and trans-4,5-epoxy-(E)-2-decenal as critical intermediate products of furan formation from linoleic acid oxidation.


Assuntos
Aldeídos , Alcenos , Temperatura Alta , Ácido Linoleico , Ácido Linoleico/química , Oxirredução , Furanos/química
2.
Free Radic Res ; 57(4): 271-281, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37401820

RESUMO

Soaking aged fat pork is a special aging process in the production of Chi-aroma Baijiu considered to involve the formation of free radicals. This study aimed to investigate the free radicals' formation pathway in Chi-aroma Baijiu during aged fat pork soaking by using electron paramagnetic resonance (EPR) and spin trapping with 5,5-dimethyl-1-pyrrolin-n-oxide (DMPO). The alkyl radical adducts (DMPO-R) and hydroxyl radical adducts (DMPO-OH) were detected in Baijiu after soaking the fat pork for aging. During the preparation process of aged fat pork, alkoxy radicals adduct (DMPO-RO) were mainly detected since lipid oxidation. Oleic acid and linoleic acid, the two main unsaturated fatty acids in fat pork, produced alkoxy radicals in the oxidation process. The total amounts of spins in linoleic acid and oleic acid after 4-month oxidation treatment increased by 248.07 ± 26.65% and 34.17 ± 0.72% than 0-month. It indicated that the free radicals in aged Chi-aroma Baijiu were mainly derived from the two main unsaturated fatty acids in aged fat pork and linoleic acid had a stronger ability to produce free radicals than oleic acid. Alkoxy radicals (RO·) from fat pork reacted with ethanol in Baijiu to form alkyl radicals (R·). The peroxide bond of hydroperoxides from the oxidation of unsaturated fatty acid was cleaved to form hydroxyl radicals (·OH) that were transferred to Baijiu. The results provide theoretical guidance for the subsequent work of free radicals scavenging.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Odorantes , Radicais Livres/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Radical Hidroxila , Ácidos Oleicos , Óxidos N-Cíclicos/química , Marcadores de Spin
3.
Artigo em Inglês | MEDLINE | ID: mdl-37336389

RESUMO

ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either "carboxyl end-first" substrate binding (5S-LOX) or "tail-first" (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.


Assuntos
Ácidos Araquidônicos , Pele , Pele/metabolismo , Lipoxigenase/metabolismo , Ácido Linoleico/química , Ácidos Linoleicos/metabolismo , Ácidos Graxos , Ácido Araquidônico
4.
Food Chem ; 422: 136151, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126956

RESUMO

To improve the stability and broaden the application of resveratrol (Res), the Res conjugated linoleate (RCL) were synthesized successfully using Res and 9c,11t-conjugated linoleic acid (CLA) with N, N'-carbonyldiimidazole (CDI) as catalyst for the first time. The Res conversion and the yield of RCL were achieved at 96.85% and 65.30%, respectively. In comparison with Res, RCL has lower acid value (1.80 mg/g) and peroxide value (3.25 meq/kg) and higher thermal stability (improved by 115.3 ℃). RCL was identified as a novel triester compound with a physical appearance as a light-yellow viscous oil. The 9c,11t-CLA was activated by CDI first, reacted with Res to form 4'-Res-ester preferentially, followed by 5,4'-Res-ester and 3,5,4'-Res-ester. The transition-state quaternary ring structures of monoesters were the key structures determining the formation of RCL. This study provided an efficient and eco-friendly approach for the synthesis of RCL, promoting the development of the synthesis of Res long-chain fatty acid ester.


Assuntos
Ácido Linoleico , Ácidos Linoleicos Conjugados , Ácido Linoleico/química , Resveratrol , Ácidos Linoleicos , Ácidos Linoleicos Conjugados/química , Ácidos Graxos , Ésteres
5.
Biochemistry ; 62(10): 1531-1543, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37115010

RESUMO

Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.


Assuntos
Lipoxigenase , Simulação de Dinâmica Molecular , Animais , Lipoxigenase/química , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Ácido Linoleico/química
6.
Protein J ; 42(2): 96-103, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36538202

RESUMO

Acetylcholinesterase (AChE, E.C. 3.1.1.7) termed as the true cholinesterase functions to end cholinergic transmission at synapses. Due to its diverse expression in non-neural tissues such as erythrocytes and bones along with its various molecular forms, researchers seek a non-classical role for this protein. Here, the inhibitory action of unsaturated 18 carbon fatty acids linoleic acid and alpha-linolenic acid and 20 carbon fatty acid arachidonic acid on AChE were investigated. Enzyme activity was measured in kinetic assay method according to Ellman assay utilizing acetylthiocholine. Analysis of the activity data revealed that among the fatty acids examined the IC50 values differed according to the length of the fatty acid and the number of the double bonds. Arachidonic acid, a 20-carbon fatty acid with 4 unsaturated bonds (20:4 n-6, cis 5,8,11,14) displayed an IC50 value of 2.78 µM and Ki value of 396.35 µM. Linoleic acid, an essential 18-carbon fatty acid (18:2 n-6, cis 9,12) had an IC50 value of 7.95 µM and Ki value of 8027.55 µM. The IC50 value of alpha-linolenic acid, 18-carbon fatty acid (18:3 n-3, cis-9,12,15) was found as 179.11 µM. Analysis of the data fit the inhibition mechanism for linoleic, alpha-linolenic and arachidonic acid as mixed-type; non-competitive. Molecular docking complied with these results yielding the best score for arachidonic acid. The alkenyl chain of the fatty acids predictably reached to the catalytic site while the carboxylate strongly interacted with the peripheric anionic site.


Assuntos
Acetilcolinesterase , Ácido Linoleico , Humanos , Ácido Linoleico/farmacologia , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Simulação de Acoplamento Molecular , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos , Ácidos Araquidônicos , Carbono
7.
J Ethnopharmacol ; 284: 114814, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34775034

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperglycemia (HG) and lipopolysaccharide (LPS) often promote superoxide accumulation, which may increase oxidative stress. Reducing superoxide production in hyperglycemia and the inflammatory condition is an emerging way to reduce protein and lipid oxidation and diabetes complication. AIM OF STUDY: To examine the effect of Agastache foeniculum essential oil (AFEO) and oil fraction (AFoil) on HG- and LPS-stimulated oxidative stress, the pathogenicity of AFEO and AFoil on oxidative stress was assessed. METHODS: The stimulatory effects of AFEO and AFoil on the activity and expression of NADH oxide (NOX), catalase (CAT), superoxide dismutase (SOD), and the expression of nuclear respiratory factor 2 (NRF2) and nuclear factor-kappa B (NF-kB) in the stimulated macrophage cell line, J774.A1, was studied. The interaction patterns of AFEO and AFoil components with NOX, SOD, CAT, NRF2, and NF-kB proteins were also deduced using molecular docking. RESULTS: Estragole was the main ingredient in AFEO (97%). Linolenic acid (32.10%), estragole (16.22%), palmitic acid (12.62%), linoleic acid (12.04%), and oleic acid (8.73%) were the major chemical components of the AFoil. NOX activation was stimulated in macrophage cells by HG and LPS. At 20 µg/mL, AFEO and AFoil decreased NOX activity while increased SOD and CAT activities in stimulated macrophages. AFoil with estragole and omega-3 fatty acids was better than AFEO with estragole in anti-hyperglycemic and anti-oxidative activity. According to molecular docking research, estragole, linoleic acid, and linolenic acid bind to different hydrophobic pockets of NOX, SOD, CAT, NFR2, and NF-kB using hydrogen bonds, van der Waals bonds, pi-alkyl, and pi-anion interactions, with different binding energies. CONCLUSION: AFEO and AFoil showed antioxidant and anti-diabetic activity. The mechanisms in lowering oxidative stress markers depended on down-regulating superoxide-producing enzymes and up-regulating superoxide-removing enzymes at gene and protein levels. The AFoil emulsion can be used to reduce the detrimental impacts of hyperglycemia and oxidative stress.


Assuntos
Agastache/química , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Derivados de Alilbenzenos/química , Derivados de Alilbenzenos/farmacologia , Animais , Anisóis/química , Anisóis/farmacologia , Antioxidantes/química , Catalase/genética , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose , Hipoglicemiantes/química , Ácido Linoleico/química , Ácido Linoleico/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Óleos Voláteis/química , Estresse Oxidativo , Óleos de Plantas/química , Conformação Proteica , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Ácido alfa-Linolênico/química , Ácido alfa-Linolênico/farmacologia
8.
Naunyn Schmiedebergs Arch Pharmacol ; 395(1): 65-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727218

RESUMO

Aconitine linoleate (1) is a lipo-diterpenoid alkaloid, isolated from Aconitum sinchiangense W. T. Wang. The study aimed at investigating the anti-proliferative efficacy and the underlying mechanisms of 1 against MCF-7 and MCF-7/ADR cells, as well as obvious the safety evaluation in vivo. The cytotoxic activities of 1 were measured in vitro. Also, we investigated the latent mechanism of 1 by cell cycle analysis in MCF-7/ADR cells and topo I and topo IIα inhibition assay. Molecular docking is done by Discovery Studio 3.5 and Autodock vina 1.1.2. Finally, the acute toxicity of 1 was detected on mice. 1 exhibited significant antitumor activity against both MCF-7 and MCF-7/ADR cells, with IC50 values of 7.58 and 7.02 µM, which is 2.38 times and 5.05 times more active, respectively than etoposide in both cell lines, and being 9.63 times more active than Adriamycin in MCF-7/ADR cell lines. The molecular docking and the topo inhibition test found that it is a selective inhibitor of topoisomerase IIα. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G0G1 phase. Furthermore, the in vivo acute toxicity of 1 in mice displayed lower toxicity than aconitine, with LD50 of 2.2 × 105 nmol/kg and only slight pathological changes in liver and lung tissue, 489 times safer than aconitine. In conclusion, compared with aconitine, 1 has more significant anti-proliferative activity against MCF-7 and MCF-7/ADR cells and greatly reduces in vivo toxicity, which suggests this kind of lipo-alkaloids is powerful and promising antitumor compounds for breast cancer.


Assuntos
Aconitina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Aconitina/administração & dosagem , Aconitina/toxicidade , Aconitum/química , Animais , Animais não Endogâmicos , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Ácido Linoleico/química , Células MCF-7 , Masculino , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores
9.
Biochem Biophys Res Commun ; 586: 74-80, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837835

RESUMO

Fatty acid desaturase (FADS) generates double bond at a certain position of the corresponding polyunsaturated fatty acids (PUFAs) with high selectivity, the enzyme activity and PUFAs products of which are essential to biological systems and are associated with a variety of physiological diseases. Little is known about the structure of FADSs and their amino acid residues related to catalytic activities. Identifying key residues of Micromonas pusilla delta 6 desaturase (MpFADS6) provides a point of departure for a better understanding of desaturation. In this study, conserved amino acids were anchored through gene consensus analysis, thereby generating corresponding variants by site-directed mutagenesis. To achieve stable and high-efficiency expression of MpFADS6 and its variants in Saccharomyces cerevisiae, the key points of induced expression were optimized. The contribution of conserved residues to the function of enzyme was determined by analyzing enzyme activity of the variants. Molecular modeling indicated that these residues are essential to catalytic activities, or substrate binding. Mutants MpFADS6[Q409R] and MpFADS6[M242P] abolished desaturation, while MpFADS6[F419V] and MpFADS6[A374Q] significantly reduced catalytic activities. Given that certain residues have been identified to have a significant impact on MpFADS6 activities, it is put forward that histidine-conserved region III of FADS6 is related to electronic transfer during desaturation, while histidine-conserved regions I and II are related to desaturation. These findings provide new insights and methods to determine the structure, mechanism and directed transformation of membrane-bound desaturases.


Assuntos
Proteínas de Algas/química , Clorófitas/enzimologia , Ácidos Graxos Dessaturases/química , Ácido Linoleico/química , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Clorófitas/química , Clonagem Molecular , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ácido Linoleico/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
Sci Rep ; 11(1): 23327, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857828

RESUMO

Pollen selection affects honeybee colony development and productivity. Considering that pollen is consumed by young in-hive bees, and not by foragers, we hypothesized that young bees learn pollen cues and adjust their preferences to the most suitable pollens. To assess whether young bees show preferences based on learning for highly or poorly suitable pollens, we measured consumption preferences for two pure monofloral pollens after the bees had experienced one of them adulterated with a deterrent (amygdalin or quinine) or a phagostimulant (linoleic acid). Preferences were obtained from nurse-aged bees confined in cages and from nurse bees in open colonies. Furthermore, we tested the bees' orientation in a Y-maze using a neutral odour (Linalool or Nonanal) that had been previously associated with an amygdalin-adulterated pollen. Consumption preferences of bees, both in cages and in colonies, were reduced for pollens that had been adulterated with deterrents and increased for pollens that had been supplemented with linoleic acid. In the Y-maze, individuals consistently avoided the odours that they had previously experienced paired with the deterrent-adulterated pollen. Results show that nurse-aged bees associate pollen-based or pollen-related cues with either a distasteful/malaise experience or a tasty/nutritious event, leading to memories that bias their pollen-mediated response.


Assuntos
Amigdalina/química , Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Aprendizagem , Ácido Linoleico/química , Néctar de Plantas/fisiologia , Pólen/química , Animais , Contaminação de Alimentos/análise , Pólen/efeitos dos fármacos
11.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948013

RESUMO

Ischemia-like (oxygen-glucose deprivation, OGD) conditions followed by reoxygenation (OGD/R) cause massive death of cerebral cortex cells in culture as a result of the induction of necrosis and apoptosis. Cell death occurs as a result of an OGD-induced increase in Ca2+ ions in the cytosol of neurons and astrocytes, an increase in the expression of genes encoding proapoptotic and inflammatory genes with suppression of protective genes. The deuterated form of linoleic polyunsaturated fatty acid (D4-Lnn) completely inhibits necrosis and greatly reduces apoptotic cell death with an increase in the concentration of fatty acid in the medium. It was shown for the first time that D4-Lnn, through the activation of the phosphoinositide calcium system of astrocytes, causes their reactivation, which correlates with the general cytoprotective effect on the cortical neurons and astrocytes in vitro. The mechanism of the cytoprotective action of D4-Lnn involves the inhibition of the OGD-induced calcium ions, increase in the cytosolic and reactive oxygen species (ROS) overproduction, the enhancement of the expression of protective genes, and the suppression of damaging proteins.


Assuntos
Astrócitos/citologia , Sinalização do Cálcio/efeitos dos fármacos , Deutério/química , Hipóxia-Isquemia Encefálica/genética , Ácido Linoleico/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citosol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Ácido Linoleico/química , Camundongos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
12.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641538

RESUMO

Response surface methodology (RSM) with a Box-Behnken design (BBD) was used to optimize the extraction of bioactive compounds from Ephedra fragilis. The results suggested that extraction with 61.93% ethanol at 44.43 °C for 15.84 h was the best solution for this combination of variables. The crude ethanol extract (CEE) obtained under optimum extraction conditions was sequentially fractionated with solvents of increasing polarity. The content of total phenolic (TP) and total flavonoid (TF) as well as the antioxidant and antiglycation activities were measured. The phytochemical fingerprint profile of the fraction with the highest activity was characterized by using RP-HPLC. The ethyl acetate fraction (EAF) had the highest TP and TF contents and exhibited the most potent antioxidant and antiglycation activities. The Pearson correlation analysis results showed that TP and TF contents were highly significantly correlated with the antioxidant and antiglycation activities. Totally, six compounds were identified in the EAF of E. fragilis, including four phenolic acids and two flavonoids. Additionally, molecular docking analysis also showed the possible connection between identified bioactive compounds and their mechanisms of action. Our results suggest new evidence on the antioxidant and antiglycation activities of E. fragilis bioactive compounds that may be applied in the treatment and prevention of aging and glycation-associated complications.


Assuntos
Antioxidantes/química , Ephedra/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Animais , Bovinos , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/isolamento & purificação , Peróxido de Hidrogênio/química , Ácido Linoleico/química , Reação de Maillard , Simulação de Acoplamento Molecular , Fenóis/análise , Fenóis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/química , Reprodutibilidade dos Testes , Soroalbumina Bovina/metabolismo , Espectrofotometria Ultravioleta , beta Caroteno/química
13.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500642

RESUMO

Currently, the negative effects of unified and intensive agriculture are of growing concern. To mitigate them, the possibilities of using local but nowadays underused crop for food production should be more thoroughly investigated and promoted. The soybean is the major crop cultivated for vegetable oil production in Zambia, while the oil production from local oil-bearing plants is neglected. The chemical composition of oils and cakes of a three traditional oil plant used by descendants of the Lozi people for cooking were investigated. Parinari curatellifolia and Schinziophyton rautanenii oils were chiefly composed of α-eleostearic (28.58-55.96%), linoleic (9.78-40.18%), and oleic acid (15.26-24.07%), whereas Ochna serrulata contained mainly palmitic (35.62-37.31%), oleic (37.31-46.80%), and linoleic acid (10.61-18.66%); the oil yield was high (39-71%). S. rautanenii and O. serrulata oils were rich in γ-tocopherol (3236.18 µg/g, 361.11 µg/g, respectively). The O. serrulata oil also had a very distinctive aroma predominantly composed of p-cymene (52.26%), m-xylene (9.63%), γ-terpinene (9.07%), o-xylene (7.97), and limonene (7.23%). The cakes remaining after oil extraction are a good source of essential minerals, being rich in N, P, S, K, Ca, and Mg. These plants have the potential to be introduced for use in the food, technical, or pharmaceutical industries.


Assuntos
Ochnaceae/química , Óleos de Plantas/química , Árvores/química , Culinária/métodos , Ácidos Graxos/química , Ácido Linoleico/química , Ácido Oleico/química , Sementes/química , Tocoferóis/química , Zâmbia , gama-Tocoferol/química
14.
Biomed Res Int ; 2021: 9979419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34258287

RESUMO

Nigella sativa (NS) is a well-known plant for its various benefits and multiuse in traditional medicine. This study is aimed at investigating the chemical composition of the different NS fractions by using GC-MS for the esterified fatty acids or HPLC-UV for organic fraction and at evaluating the inhibitory effect on pancreatic α-amylase (in vitro, in vivo) and intestinal glucose absorption. Among all the investigated fractions, it was shown that they are rich with different molecules of great interest. The n-hexane fraction was characterized by the presence of linoleic acid (44.65%), palmitic acid (16.32%), stearic acid (14.60%), and thymoquinone (8.7%), while among the identified peaks in EtOH fraction we found catechin (89.03 mg/100 g DW), rutin (6.46 mg/100 g DW), and kaempferol (0.032 mg/100 g DW). The MeOH fraction was distinguished with the presence of gallic acid (19.91 mg/100 g DW), catechin (13.79 mg/100 g DW), and rutin (21.07 mg/100 g DW). Finally, the aqueous fraction was marked by the existence of different molecules; among them, we mention salicylic acid (32.26 mg/100 g DW), rutin (21.46 mg/100 g DW), and vanillic acid (3.81 mg/100 g DW). Concerning the inhibitory effect on pancreatic α-amylase, it was found that in the in vitro study, the best IC50 registered were those of EtOH (0.25 mg/ml), MeOH (0.10 mg/ml), aqueous (0.031 mg/ml), and n-hexane fraction (0.76 mg/ml), while in the in vivo study an important inhibition of α-amylase in normal and diabetic rats was observed. Finally, the percentage of intestinal glucose absorption was evaluated for all tested extracts and it was ranging from 24.82 to 60.12%. The results of the present study showed that the NS seed fractions exert an interesting inhibitory effect of α-amylase and intestinal glucose absorption activity which could be associated with the existent bioactive compounds. Indeed, these compounds can be used as antidiabetic agents because of their nontoxic effect and high efficacy.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucose/farmacocinética , Intestinos/patologia , Nigella sativa/metabolismo , Pâncreas/enzimologia , alfa-Amilases Pancreáticas/biossíntese , Animais , Benzoquinonas/química , Diabetes Mellitus Experimental , Feminino , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Jejuno/metabolismo , Ácido Linoleico/química , Masculino , Camundongos , Ácido Palmítico/química , Pâncreas/efeitos dos fármacos , Ratos , Ratos Wistar , Ácidos Esteáricos/química
15.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299426

RESUMO

Virgin olive oil (VOO) is one of the key components of the Mediterranean diet owing to the presence of monounsaturated fatty acids and various bioactive compounds. These beneficial traits, which are usually associated with the cultivar genotype, are highlighting the demand of identifying characteristics of olive oil that will ensure its authenticity. In this work, the fatty acid (FA) composition of 199 VOO samples from Koroneiki, Megaritiki, Amfissis, and Manaki cultivars was determined and studied by chemometrics. Olive cultivar greatly influenced the FA composition, namely, oleic acid (from 75.36% for Amfissis to 65.81% for Megaritiki) and linoleic acid (from 13.35% for Manaki to 6.70% for Koroneiki). Spearman's rho correlation coefficients revealed differences and similarities among the olive oil cultivars. The use of the forward stepwise algorithm identified the FAs arachidonic acid, gadoleic acid, linoleic acid, α-linolenic acid, palmitoleic acid, and palmitic acid as the most significant for the differentiation of samples. The application of linear and quadratic cross-validation discriminant analysis resulted in the correct classification of 100.00% and 99.37% of samples, respectively. The findings demonstrated the special characteristics of the VOO samples derived from the four cultivars and their successful botanical differentiation based on FA composition.


Assuntos
Ácidos Graxos/análise , Ácidos Graxos/química , Azeite de Oliva/química , Análise Discriminante , Grécia , Ácido Linoleico/química , Olea/química , Ácido Oleico/química , Azeite de Oliva/análise , Azeite de Oliva/metabolismo
16.
Sci Rep ; 11(1): 11451, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075089

RESUMO

Matrix metalloproteinases (MMPs) are pivotal for cancer cell migration and metastasis which are generally over-expressed in such cell types. Many drugs targeting MMPs do so by binding to the conserved catalytic domains and thus exhibit poor selectivity due to domain-similarities with other proteases. We report herein the binding of a novel compound [3-(E-3,4-dihydroxycinnamaoyloxyl)-2-hydroxypropyl 9Z, 12Z-octadeca-9, 12-dienoate; Mol. wt: 516.67 Da], (C1), isolated from a seagrass, Cymodocea serrulata to the unconserved hemopexin-like (PEX) domain of MMP2 (- 9.258 kcal/mol). MD simulations for 25 ns, suggest stable ligand-target binding. In addition, C1 killed an ovarian cancer cell line, PA1 at IC50: 5.8 µM (lesser than Doxorubicin: 8.6 µM) and formed micronuclei, apoptotic bodies and nucleoplasmic bridges whilst causing DNA laddering, S and G2/M phase dual arrests and MMP disturbance, suggesting intrinsic apoptosis. The molecule increased mRNA transcripts of BAX and BAD and down-regulated cell survival genes, Bcl-xL, Bcl-2, MMP2 and MMP9. The chemical and structural details of C1 were deduced through FT-IR, GC-MS, ESI-MS, 1H and 13C NMR [both 1D and 2D] spectra.


Assuntos
Alismatales/química , Cinamatos , Ésteres , Ácido Linoleico , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Animais , Células CHO , Ciclo Celular/efeitos dos fármacos , Cinamatos/química , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Cricetulus , Ésteres/química , Ésteres/isolamento & purificação , Ésteres/farmacologia , Ácido Linoleico/química , Ácido Linoleico/isolamento & purificação , Ácido Linoleico/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/isolamento & purificação , Inibidores de Metaloproteinases de Matriz/farmacologia , Domínios Proteicos
17.
J Lipid Res ; 62: 100094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34171322

RESUMO

A complex assembly of lipids including fatty acids, cholesterol, and ceramides is vital to the integrity of the mammalian epidermal barrier. The formation of this barrier requires oxidation of the substrate fatty acid, linoleic acid (LA), which is initiated by the enzyme 12R-lipoxygenase (LOX). In the epidermis, unoxidized LA is primarily found in long-chain acylceramides termed esterified omega-hydroxy sphingosine (EOS)/phytosphingosine/hydroxysphingosine (collectively EOx). The precise structure and localization of LOX-oxidized EOx in the human epidermis is unknown, as is their regulation in diseases such as psoriasis, one of the most common inflammatory diseases affecting the skin. Here, using precursor LC/MS/MS, we characterized multiple intermediates of EOx, including 9-HODE, 9,10-epoxy-13-HOME, and 9,10,13-TriHOME, in healthy human epidermis likely to be formed via the epidermal LOX pathways. The top layers of the skin contained more LA, 9-HODE, and 9,10,13-TriHOME EOSs, whereas 9,10-epoxy-13-HOME EOS was more prevalent deeper in the stratum corneum. In psoriatic lesions, levels of native EOx and free HODEs and HOMEs were significantly elevated, whereas oxidized species were generally reduced. A transcriptional network analysis of human psoriatic lesions identified significantly elevated expression of the entire biosynthetic/metabolic pathway for oxygenated ceramides, suggesting a regulatory function for EOx lipids in reconstituting epidermal integrity. The role of these new lipids in progression or resolution of psoriasis is currently unknown. We also discovered the central coordinated role of the zinc finger protein transcription factor, ZIC1, in driving the phenotype of this disease. In summary, long-chain oxygenated ceramide metabolism is dysregulated at the lipidomic level in psoriasis, likely driven by the transcriptional differences also observed, and we identified ZIC1 as a potential regulatory target for future therapeutic interventions.


Assuntos
Ceramidas/biossíntese , Ácido Linoleico/biossíntese , Lipidômica , Psoríase/metabolismo , Ceramidas/química , Ceramidas/genética , Humanos , Ácido Linoleico/química , Ácido Linoleico/genética , Estrutura Molecular , Psoríase/genética
18.
Ann N Y Acad Sci ; 1500(1): 112-121, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34060095

RESUMO

Previous studies suggest that squalene (SQ) in sebum is oxidized by a photooxidation mechanism (i.e., singlet oxygen oxidation) to create SQ hydroperoxide (SQOOH), a compound that causes adverse skin conditions. However, oxidation of other lipids in sebum, such as linoleic acid (LA), has not been fully understood. Elucidating their oxidation, especially its mechanisms, may lead to a further understanding of the relationship between sebum oxidation and skin conditions. In this study, using HPLC-MS/MS, we aimed to detect LA hydroperoxide (LAOOH) directly from sebum and identify the oxidation mechanism of LA in sebum through analysis of LAOOH isomers. We developed extraction and HPLC-MS/MS analysis conditions that can sufficiently quantify each LAOOH isomer in sebum. Using this method, LAOOH was detected in samples from healthy individuals, demonstrating the presence of LAOOH in human sebum. Moreover, isomer analysis of LAOOH and SQOOH indicated that LA and SQ are oxidized in sebum by discrete oxidation mechanisms (LA oxidized by free radical oxidation, whereas SQ oxidized by singlet oxygen oxidation). Such results may further lead to the development of mechanism-specific ways to prevent oxidation of sebum via a selection of appropriate antioxidants, ultimately leading to the promotion of skin health.


Assuntos
Ácido Linoleico/metabolismo , Oxirredução , Sebo/metabolismo , Esqualeno/metabolismo , Metabolismo dos Carboidratos , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Ácido Linoleico/química , Ácido Linoleico/isolamento & purificação , Metabolismo dos Lipídeos , Masculino , Metabolômica/métodos , Extração em Fase Sólida , Esqualeno/química , Esqualeno/isolamento & purificação , Espectrometria de Massas em Tandem
19.
Chem Phys Lipids ; 237: 105089, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965418

RESUMO

A kinetic model of polyunsaturated fatty acids (PUFAs) radical chain oxidation in micelles is presented, taking into account the diffusion of active intermediates between aqueous and organic phases, and its effect on the detailed mechanism of the process. The model made it possible to indirectly involve the structural changes of micelles and their kinetic characteristics by varying the actual values of the reactions rate constants. The modeling results are in good agreement with experimental data for the oxidation of methyl linoleate and linoleic acid.


Assuntos
Ácidos Graxos Insaturados/química , Micelas , Modelos Químicos , Cinética , Ácido Linoleico/química , Octoxinol/química , Oxirredução
20.
Arch Insect Biochem Physiol ; 107(2): e21788, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33817829

RESUMO

Linoleic acid (C18:2∆9,12 , LA) is an important metabolite with numerous essential functions for growth, health, and reproduction of organisms. It has long been assumed that animals lack ∆12-desaturases, the enzymes needed to produce LA from oleic acid (C18:1∆9 , OA). There is, however, increasing evidence that this is not generally true for invertebrates. In the insect order Hymenoptera, LA biosynthesis has been shown for only two parasitic wasp species of the so-called "Nasonia group," but it is unknown whether members of other taxa are also capable of synthesizing LA. Here, we demonstrate LA biosynthesis in 13 out of 14 species from six families of parasitic wasps by gas chromatography-mass spectrometry analysis using two different stable isotope labeling techniques. Females of the studied species converted topically applied fully 13 C-labeled OA into LA and/or produced labeled LA after feeding on fully 13 C-labeled α- d-glucose. These results indicate that ∆12-desaturases are widespread in parasitic Hymenoptera and confirm previous studies demonstrating that these insects are capable of synthesizing fatty acids de novo.


Assuntos
Ácido Linoleico/biossíntese , Vespas/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácido Linoleico/química , Atrativos Sexuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...